Микросхема 2003 в компьютерном блоке питания
Микросхема 2003 в компьютерном блоке питания
Н-да.
Неисповедимы
пути.
И вот он уже регулируемый!
Fantastisch!
ПРОЕКТ №20: блок питания с регулируемым Uвых из АТХ-блока
Я неоднократно обращал внимание на рекомендации в Сети по переделке компьютерных БП в лабораторные с регулируемым выходным напряжением. И вот решил попробовать модернизировать АТХ-блок с минимальным вмешательством в схему. Поскольку у меня накопилось достаточно всякого РАДИОхабара, то и финансовые затраты должны быть минимальными.
1.Извлёк из запасников АТХ- блок:
2. На нём написано:
Я несколько скептически отношусь к указанным параметрам. Но, Бог с ними, с параметрами. Меня вполне устроит, если они верны хотя бы наполовину.
3. Не забыв включить блок с тыловой стороны:
соответственно цветовой кодировке разъёма питания
замкнул зелёный проводок «PsON» и чёрный «Gnd» — блок включился:
4. Проконтролировал напряжения на выходах +12В и +5В:
5. Приступаю к вскрытию. Сметаю кисточкой пыль и прочий мусор:
220В, отвинчиваю винты крепления платы, вентилятора и извлекаю их из корпуса:
7. Отпаиваю лишние провода и вентилятор (пока, чтоб не мешал):
8. Пытаюсь определить, какой именно ШИМ-контроллер стоит в этом блоке. Надпись читается с трудом: КА7500В
9. Вид снизу на распайку обвязки контроллера:
10.Переделка БП довольно проста – нужно найти резистор R34 (показан стрелкой), связывающий 1-ю ножку микросхемы и шину +12В, и выпаять его:
На схеме он также выделен жёлтым цветом:
Правда, номинал на схеме 3,9 кОм, а измерения показывают, что не всё то истина, что пишут на. Реально сопротивление этого резистора составило около 39 кОм.
11. На место R34 надо впаять переменный резистор. Не утруждая себя долгими поисками, я взял переменный на 47 кОм + 4,3 кОм последовательно с ним (полагаю, можно использовать и несколько иные номиналы):
12. Включил БП – никаких лишних звуков, запахов, искрений, возгораний и т.п. – он заработал сразу:
13. Померил диапазоны изменений напряжений:
+12В: 4,96…12,05В
+5В: 2,62…5,62В
+3,3В: 1,33…3,14В
Это меня устраивает, поскольку я не ставил никаких ГЛОБАЛЬНЫХ целей по модернизации данного БП.
14. Для индикации выходного напряжения я применю обычный аналоговый вольтметр:
Его показания довольно хорошо согласуются с цифровым:
15. Блоку надо придать вид законченной конструкции. Считаю, что корпус БП и так достаточно хорош. Оформить придётся только переднюю панель. Для этого я выведу на неё клеммы, выключатель (так и хочется сказать «типа ТУМБЛЕР» по аналогии с расположенным строго на север туалЭтом «типа СОРТИР», обозначенным на плане буквами «МЭ» и «ЖО» — см. фото из моей любимой комедии),
вольтметр, амперметр и, конечно же, светодиодик.
Примерно так:
Однако, как показала прикидка, я слишком размахнулся. У меня нет достаточно миниатюрных приборов, и поэтому амперметр ставить некуда! А если его ставить, то негде будет размещать все остальные элементы, если делать переднюю панель не более реального размера фронтальной стороны блока.
Вот так это смотрится в программе FrontDesigner 3.0. Её можно скачать ОТСЮДА, а можно и поискать в Сети.
16. Немного подумав, решил заменить предыдущий вольтметр на другой, который не жалко переделать. Этот вольтметр также предназначен для работы в горизонтальном положении, а если расположить его вертикально, то угол наклона шкалы будет отрицательным – это не очень удобно для наблюдений. Вот этот прибор я и буду немножко модернизировать.
Прибор открыт:
Измеряю сопротивление добавочного резистора:
Новый предел измерения будет 15В. Исходя из того, что напряжение Uпропорционально сопротивлению R (и наоборот), т.е. по закону Ома для участка цепи U=IRи R=U/I, следует простая пропорция Rд/x=6В/15В, откуда х=Rд×15/6,где Rд=5,52 кОм – прежний добавочный резистор, х – новый добавочный резистор, 6В – прежний предел, 15В – новый предел вольтметра.
Итак, х=5,52х15/6= 13,8 кОм. Это элементарная физика и математика.
Новый резистор я составил из двух:
Корпус прибора пришлось несколько «укоротить», чтобы он соответствовал высоте БП:
Сделал новую шкалу в той же программе FrontDesigner 3.0. Вольтметру придётся работать в экстремальных условиях: вверх ногами и вертикально, и отсчёт будет «обратный» – справа-налево!
17. Вот так, примерно, всё будет расположено на передней панели:
Размечаю панель:
И делаю в ней отверстия:
Устанавливаю элементы:
К корпусу БП панель будет крепиться на П-образных скобках:
Глянув в окно, обнаружил, что, как всегда, неожиданно выпал первый снег – 26 окт 2016:
18. Приступаю к окончательной сборке. Ещё раз прикидываю размещение:
Предварительно устанавливаю вольтметр и переднюю панель на корпус БП:
Вентилятор я вставил наоборот, чтобы он гнал воздух внутрь корпуса, вставил плату, подсоединил «GND», выключатель («PsON»и «Gnd»), включил – БП запустился. Регулировка выходного напряжения также происходит в обратную сторону – против часовой стрелки. Проконтролировал изменение напряжения на шине +12В:
Все провода припаял, установил и присоединил вольтметр, установил переднюю панель, включил – светодиод моргнул, стрелка вольтметра прыгнула влево (он у меня установлен «наоборот») и всё! Выключил, включил – то же самое! Проверил, нет ли замыканий с обратной стороны передней панели – всё нормально. В чём дело? Повернул переменный резистор в сторону уменьшения (он стоял на максимуме), включил – БП заработал. Плавно вращаю регулятор – снова всё нормально: напряжение на выходах увеличивается и уменьшается, блок не вырубается. Выключил. Вывернул на максимум, включил – снова не включается! Выключил. Установил в промежуточное положение, включил – БП запустился. Т.о. ошибка не в монтаже, а где-то глубже. Но БП работает!
Окончательно собираю конструкцию и снова включаю для проверки:
Вот законченная конструкция:
Назову его "БП-АТХ в2.0".
Финансовые затраты равны НУЛЮ. Я использовал только имеющиеся у меня детали и материалы.
Микросхема 2003 в компьютерном блоке питания
Основа современного бизнеса — получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, — просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно — различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат — импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку.
Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках «Дефект» столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все — «труба», то хоть какую-нить запцацку снять и вкидануть в другое оборудование.
Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак — несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель — не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В.
Часть 1. Так себе.
Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает — можно делать пробный пуск и измерить все напряжения.
+3,3 В — оранжевый
По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D.
Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть — блок включится и вентилятор — индикатор включения — начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это «черный» и «зеленый». Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится.
Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания.
Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт.
Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения.
Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В.
Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра.
Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В.
Замеряем все напряжения по шинам
Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины — 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод — вполне.
Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром — вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток.
Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке — типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0.
Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель.
Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ.
Часть 2. Более-менее.
Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения — достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются.
Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор — для подбора срабатываний по току. Но получилось неважно — нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор.
Переделка компьютерного БП в двухполярный источник питания
В очередной раз встает вопрос о переделке компьютерного блока питания. На этот раз в двухполярный источник питания. Возникла нужда в таком источнике питания для усилителя. Но железный трансформатор мотать не хочется, а сборка с нуля импульсного блока питания занимает слишком много времени. Вот и было решено получить нужное напряжение из компьютерного блока питания. Сам источник питания был необходим для усилителя на микросхеме TDA7294.
TDA7294
И стоит заметить, что многие начинающие радиотехники сталкиваются с такой проблемой – собрали усилитель, но не могут определиться с блоком питания.
На самом деле это сложно назвать переделкой, поскольку компьютерный блок питания без всяких разных переделок может отдавать нужное напряжение для подобных целей. И для этого прежде всего необходимо раздобыть рабочий блок питания абсолютно любой мощности и формата.
Про силовые шины и выходные напряжения должно быть все понятно из следующего рисунка:
По идее, необходимо соединить зеленый провод с любым из черных, чтобы запустить блок питания.
Затем нужно взять пару многожильных проводов и припаять их к тем выводам трансформатора, которые изображены на рисунке ниже:
Ничего сложного! А вся хитрость в том, что в компьютерном блоке питания все выпрямители однополярного типа со средней точкой.
То есть все обмотки, по сути, двухполярные, и если использовать концы этих обмоток и пустить их на отдельный диодный выпрямитель, то можно получить напряжение в 2 раза больше, чем с однополярным выпрямителем, который задействован в компьютерном блоке питания.
Земля блока питания останется самой собой и в этом случае, то есть средней точкой.
Остается подобрать только диодный мост.
В предлагаемом варианте необходимо использовать диоды с обратным напряжением не меньше 100 В. Они обязательно должны быть импульсного типа. Можно также задействовать диоды Шоттки.
Идеальным вариантом являются отечественные КД213. Они довольно мощные и к тому же без проблем работают на таких частотах.
После переделки получается двухполярное напряжение, а если быть точнее, двухполярные 30 В. Это как раз то, что нужно для микросхем типа TDA7294.
И самое важное – будет работать защита. При коротком замыкании блок попросту уйдет в защиту. Чтобы снять ее, необходимо на короткое время разъединить зеленый и черный провода, а затем соединить снова. Если блок будет постоянно использоваться, то стоит поставить выключатель.
В зависимости от блока питания 12-вольтовые шины на трансформаторе могут быть с разных сторон, поэтому, чтобы не путаться, необходимо отследить путь желтого выходного провода и найти диодную сборку на шине 12 В.
Потом нужно припаять провода к крайним выводам этой сборки.
Не будет работать только стабилизация, но, в принципе, для питания усилителя она вовсе не нужна.
Переделка БП ATX на ШИМЕ WT7514L,LPG 899,AT2005A в ЛБП
а почему нельзя проще сделать регулировку по напряжению по 16 ноге и все .
Vitaliy Petrenko
Доброго времени. Хотелось бы увидеть видео о переделке блока на микросхеме uc3843
Денис Иванов
У меня тоже куча этих транзисторов высоковольтных с мониторов валяется, давно хотел их туда впиликать, только очково было. Ну теперь точно впиликаю ))
собрал, подсоединил — напруги на выходе нет, на выходе с трансформатора запитки 5 и 12, в итоге задымился переменник напряжения. сижу и нифига не понимаю как это настраивать =((((
на платке постоянно горит светодиод по температуре и слабо светит диод по току, по напруге молчит
And iPhone
Ссылка на схему не работает
Alex Rediculcev
Молодец доступно вполне. Не подскажешь а на 2 х tl358 получиться вместо 324 ?
Игорь Зуев
Решил поделится фоном
Vitaliy Petrenko
Добрый день , Александр. Переделую блок питания на микросхеме cg8010,нету регулировки напряжения до нуля, не имеит ли смысла отключить операционный усилитель по 15, 16 ножке.
Радио для всех
Хорошее видео , подробное . Я думаю доступно и для новичков.
CARINA E 45
Для кого видео, спецы и так все это знают, чайники-любители типа меня не хера не поймут
Shim TV
сейчас начал тулить операционник лм358 и заметил на твоей схеме ошибку! ты зачем зашунтировал диод 1n4148 РЦ цепочкой? это явно не верно.
Shim TV
Привет мужик! Лежат с десяток бп на 7520 с мелким 33 трансформатором, они ват 200 примерно, пару уже переделал на 494 шим и обвязку в лабораторники по схеме Чернобривко или итальянца. Наткнулся на твой ролик, решил без замены шима переделать, а то 494 уже кончаются, переделываю их на продажу, что б мусор в квартире не лежал, штук 20 разных переделывал, но устал от борьбы со свистами и многие лежат не доделанные. Скажи если без 3 и 4 каскада делать , то можно операционник ставить например лм358 ? Думаю пока отточить возможность работы с данным шим а потом видно будет, мож и оставлю как ты 324 операционник. Спасибо за видео. Кстати 4 нога это перегрузка по мощности скорее всего, я так понимаю , поправь если не так, если делать регуль только напряжения выходного, то имея такую защиту по перегрузке мощности (настраиваемую от мощности транса) то можно вообще ток не регулировать, не всем он нужен, и это упростит борьбу со свистами и подбором РЦ цепи?
Grigory Rasins
Здравствуйте! Перед началом переделки хочу уточнить у Вас два момента. 1. Имеет ли значение какие ОУ применять, с выходом "открытый коллектор" или "открытый эмиттер"? 2. В оригинале на внутренний усилитель ошибки подаются для контроля три напряжения, а при переделке он "подтянут" к земле, что по моему соответствует сигналу "ошибка"?
Владимир Бойко
Спасибо за работу, мне нравится. Попытаюсь использовать вашу методу.Удачи!
серега Змей
А обману можно запитать с дежурного напряжения.
серега Змей
А wt 7520 все тоже самое. И про обману поподробнее.
Харитон Небелмесов
Не в обиду сказано. Очень плохо поясняешь. Всё равно лайк и подписка.
Admin Adminov
Привет! а можно переделать atx на микросхеме 2005 с заменой шим на 494?
Денис Рухлинский
Нельзя на 494 отрезать входы усилителей ошибки, их нужно раскидать на плюс и минус, иначе на выходе этих усилителей будет чехарда из наводок. Проверял не раз.
Alex Andrushchak
В каком диапазоне ожидается напряжение на 14 ноге для регулирования от нуля до максимума?
Диагностирование микросхемы AT2005B.
Диагностика микросхемы AT2005B (рис. 1,2) мало чем отличается от классического варианта диагностирования любого ШИМ контроллера. В общем случае диагностирование можно разделить на несколько этапов.
На первом этапе необходимо сделать полный визуальный контроль состояния микросхемы. Особо стоит обратить внимание на корпус микросхемы, нередки случаи, когда выход из строя микросхемы сопровождается разрушением ее корпуса, изменением цвета корпуса и печатной платы в том месте, где расположена микросхема. Далее в процессе диагностики необходимо с помощью обычного тестера прозвонить все силовые выводы и управляющие выводы микросхемы на короткое замыкание, к таковым можно отнести:
-контакты, через которые осуществляется питание микросхемы;
-контакты, по которым осуществляется контроль выходных напряжений блока питания (+3,3В, +5Ви +12В);
-контакты, на которых формируются выходные управляющие выводы для силового каскада.
Наличие малых сопротивлений (единицы и десятки Ом) между названными контактами и общим контактом (GND) указывает на необходимость замены микросхемы или более детального ее диагностирования и обследования сопутствующих цепей ее обвязки. Стоит отметить, что возникновение пробоев по указанным контактам, как правило, приводит к большим токам через микросхему, что является причиной срабатывания цепей защиты в первичных силовых цепях инвертора и дополнительного дежурного источника питания, а в случае их несрабатывания к сильному разогреву, разрушению или потемнению корпуса микросхемы.
Следующие этапы диагностики подразумевают измерение сигналов на выводах микросхемы. Для этого потребуется лабораторный источник питания, тестер, осциллограф. От внешнего источника питания на микросхему, а именно на вывод питания, необходимо подать напряжение питания +5 В. При этом в момент включения необходимо проконтролировать появление пилообразного напряжения питания на выводе подключения частотозадающего конденсатора (конт.8). Далее можно проверить исправность выходного каскада микросхемы. Для этого необходимо имитировать наличие сигнала удаленного включения PSON, соединив вывод 11 микросхемы с общим проводником (GND). Одновременно нужно проконтролировать кратковременное появление управляющих прямоугольных сигналов на выводах 9 и 10. Продолжительность появления сигналов составляет время не более одной секунды, далее импульсы исчезают по причине срабатывания блокировки от КЗ в выходных шинах (+З,ЗВ, +5В, +12В), т.к. выходных напряжений как таковых нет.
Заключительный этап диагностики микросхемы подразумевает проверку практически всех ее функциональных блоков (рис. 2). Для этого необходимо от внешних источников питания на выходе блока питания имитировать выходные напряжения и отсутствие блокировок, естественно, саму микросхему выпаивать из схемы не надо (рис. 3). Необходимо учесть, что некоторые блоки питания в своем составе в канале формирования дежурного питания, а следовательно и питания микросхемы, содержат интегральный стабилизатор напряжения +5В (7805). В этом случае питание микросхемы нужно обеспечить от внешних источников постоянного тока, или имитировать шину +5VSTB путем подачи напряжения до стабилизатора напряжения. Все остальные выходные шины имитируются простой подачей необходимых напряжений на выходные шины блока питания. Для упрощения и уменьшения количества необходимого стендового оборудования можно все необходимые напряжения получить с заведомо исправного блока питания стандарта ATX. Отсутствие блокировки в слаботочных каналах имитируем подачей на 6 ножку микросхемы напряжения более чем 0,68 В (в исправном блоке питания на ножке висит напряжение около 0,86 В), для этого можно использовать питание микросхемы, т.е. закоротить между собой ножки 6 и 15. Далее точно также как и в предыдущем случае, контакт микросхемы PSON вывод 11, соединяем с общим проводником (GND), т. е. разрешаем запуск микросхемы. Если все подключения сделаны правильно микросхема AT2005B должна запустится. Работоспособность микросхемы проверяется наличием пилообразного напряжения на выводе 8 (Ст) и управляющих прямоугольных импульсов на ее выводах 9 и 10, которые также можно наблюдать в первичной обмотке согласующего трансформатора, что свидетельствует о исправности транзисторов согласующего каскада.
Цепи обратной связи проверяются наличием напряжения на входе 2 (VADJ) и 16 (OPOUT). Отсутствие КЗ и обрыва в выходных шинах проверяется наличием напряжений на входах микросхемы 3(V3.3),4( V5),5( V12). Если управляющих импульсов на выходе микросхемы нет, то это свидетельствует о блокировке микросхемы (например через вывод 6 (PT) или неисправности самой микросхемы). Если же отсутствует пилообразное напряжение на выводе 8 микросхемы, то это свидетельствует об отсутствии должного напряжения на микросхеме или также ее неисправности.
Итак можно сделать следующие выводы:
— для проверки микросхемы из диагностического оборудования необходимы тестер, осциллограф, внешние источники постоянного тока или работоспособный системный блок питания;
— проверка микросхемы практически не отличается от проверок микросхем ШИМ контроллеров аналогичного класса применяемых в системных источниках питания.
— методики поверки микросхемы должны применяться с учетом конкретных схемотехнических решений блоков питания в цепях питания микросхемы и цепях обратной связи;
— применяя данную проверку также можно проверить и согласующий каскад блока питания, для этого необходимо по возможности отключить или выпаять силовые ключи блока питания и поверить наличие управляющих импульсов в первичной и вторичной обмотках согласующего трансформатора;
— по результатам данных проверок можно сделать вывод о работоспособности не только управляющей микросхемы, но оценить работу вторичных выпрямителей и согласующего каскада.