Darbe.ru

Быт техника Дарби
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Метод Крамера онлайн

Метод Крамера онлайн

Данный онлайн калькулятор находит решение системы линейных уравнений (СЛУ) методом Крамера. Дается подробное решение. Для вычисления выбирайте количество переменных. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить.»

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Метод Крамера

Метод Крамера − это метод решения квадратной системы линейных уравнений с отличным от нуля определителем основной матрицы. Такая система линейных уравнений имеет единственное решение.

Пусть задана следующая система линейных уравнений:

(1)

Заменим данную систему (1) эквивалентным ей матричным уравнением

Ax=b(2)

где A -основная матрица системы:

(3)

а x и b − векторы столбцы:

первый из которых нужно найти, а второй задан.

Так как мы предполагаем, что определитель Δ матрицы A отличен от нуля, то существует обратная к A матрица A -1 . Тогда умножая тождество (2) слева на обратную матрицу A -1 , получим:

A -1 Ax=A -1 b.

Учитывая, что произведение взаимно обратных матриц является единичной матрицей (A -1 A=E), получим

x=A -1 b.(4)

Обратная матрица имеет следующий вид:

(5)

где Aij − алгебраическое дополнение матрицы A, Δ − определитель матрицы A.

где Δi − это определитель матрицы, полученной из матрицы A, заменой столбца i на вектор b.

Мы получили формулы Крамера:

Алгоритм решения системы линейных уравнений методом Крамера

  1. Вычислить определитель Δ основной матрицы A.
  2. Замена столбца 1 матрицы A на вектор свободных членов b.
  3. Вычисление определителя Δ1 полученной матрицы A1.
  4. Вычислить переменную x11/Δ.
  5. Повторить шаги 2−4 для столбцов 2, 3, . n матрицы A.

Примеры решения СЛУ методом Крамера

Пример 1. Решить следующую систему линейных уравнений методом Крамера:

Запишем ее в матричной форме: Ax=b, где

.

Вычислим определитель основной матрицы A:

.

Заменим столбец 1 матрицы A на вектор столбец b:

.

Вычислим определитель матрицы A1:

.

Заменим столбец 2 матрицы A на вектор столбец b:

.

Вычислим определитель матрицы A2:

.

Заменим столбец 3 матрицы A на вектор столбец b:

.

Вычислим определитель матрицы A3:

.

Решение системы линейных уравнений вычисляется так:

Пример 2. Решить следующую систему линейных уравнений методом Крамера:

Запишем ее в матричной форме: Ax=b, где

Найдем определитель матрицы A. Для вычисления определителя матрицы, приведем матрицу к верхнему треугольному виду.

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3,4 со строкой 1, умноженной на -1/4,-3/4,-2/4 соответственно:

Выбираем самый большой по модулю ведущий элемент столбца 2. Для этого меняем местами строки 2 и 4. При этом меняется знак определителя на «−».

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строки 3,4 со строкой 2, умноженной на -26/76,2/76 соответственно:

Выбираем самый большой по модулю ведущий элемент столбца 3. Для этого меняем местами строки 3 и 4. При этом меняется знак определителя на «+».

Исключим элементы 3-го столбца матрицы ниже главной диагонали. Для этого сложим строку 4 со строкой 3, умноженной на -817/1159:

Мы привели матрицу к верхнему треугольному виду. Определитель матрицы равен произведению всех элементов главной диагонали:

Заменим столбец 1 матрицы A на вектор столбец b:

Для вычисления определителя матрицы A1, приведем матрицу к верхнему треугольному виду, аналогично вышеизложенной процедуре. Получим следующую матрицу:

Читайте так же:
График отпусков диаграмма ганта в excel

Определитель матрицы равен произведению всех элементов главной диагонали:

Заменяем столбец 2 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Заменяем столбец 3 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Заменяем столбец 4 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Как решить матрицу в Excel?

Чтобы скопировать функцию в другие ячейки, выделяем область, которая совпадает по количеству столбцов и строк с начальной матрицей. Затем нажимаем клавишу F2 на клавиатуре, после чего жмем комбинацию Ctrl+Shift+Enter. Все готово. В результате выполненных действий нам удалось найти обратную матрицу.

Как решить матрицу методом Крамера в Excel?

Пример решения методом Крамера в Excel

  1. Введите матрицу размером n x n.
  2. Определите место для блока обратной матрицы размером n x n . Записать в первую ячейку блока функцию МОБР(диапазон).
  3. Выделите блок размером n x n.
  4. Перейти в режим редактирования (клавиша F2 );
  5. Нажать клавиши Ctrl+Shift+Enter .

Как вычесть матрицу из матрицы в Excel?

Для вычитания матрицы В из матрицы А (С=А — В) в ячейку N3 введем формулу =B3 — H3 и скопируем её на весь диапазон матрицы С.

Какие из таблиц являются матрицами?

В анализе данных наряду со статистическими таблицами применяются и другие виды таблиц, одним из которых является матрица. Матрицей называется прямоугольная таблица числовой информации, состоящая из m строк и n столбцов.

Что такое Мобр в Excel?

Функция МОБР – это вычислительное определение матрицы. Она возвращает обратную матрицу для матрицы, хранящейся в массиве. Обратные матрицы, как и определители, обычно используются для решения систем уравнений с несколькими неизвестными.

Какой массив используется для вычисления обратной матрицы?

Возвращает обратную матрицу (матрица хранится в массиве). Массив (обязательный аргумент) — числовой массив, содержащий матрицу с одинаковым числом столбцов и строк.

Как решить систему уравнений методом обратной матрицы в Excel?

Решение системы уравнений методом обратной матрицы

Для этого в ячейку А9 введем формулу =МОБР(A2:C4). После этого выделим диапазон А9:С11, начиная с ячейки, содержащей формулу. Нажмем клавишу F2, а затем нажмем клавиши CTRL+SHIFT+ENTER. Формула вставится как формула массива.

Как решить систему уравнений в Excel?

Для этого выделите ячейки A18:C20 , а в Строке формул введите =МОБР(A11:C13) , затем нажмите CTRL+SHIFT+ENTER . Решение системы уравнений получим умножением обратной матрицы и столбца свободных членов.

Как решить систему уравнений с помощью обратной матрицы?

Суть метода обратной матрицы можно выразить в трёх пунктах:

  1. Записать три матрицы: матрицу системы $A$, матрицу неизвестных $X$, матрицу свободных членов $B$.
  2. Найти обратную матрицу $A^< -1>$.
  3. Используя равенство $X=A^< -1>cdot B$ получить решение заданной СЛАУ.

Что такое матрица в Экселе?

Операции с матрицами в Excel. Функции: ссылки и массивы Амина С. Под матрицей подразумевается набор ячеек, расположенных непосредственно друг возле друга и которые образуют вместе прямоугольник.

Как решить систему линейных уравнений в Excel?

Для этого выделите ячейки A18:C20 , а в Строке формул введите =МОБР(A11:C13), затем нажмите CTRL+SHIFT+ENTER . Решение системы уравнений получим умножением обратной матрицы и столбца свободных членов. Перемножить матрицы можно с помощью формулы массива =МУМНОЖ().

Как умножить матрицу на матрицу в Excel?

Умножение матриц в EXCEL

  1. выделите указанный диапазон H8:I9.
  2. поставьте курсор в Строку формул (или нажмите клавишу F2 )
  3. введите формулу =МУМНОЖ(A8:B9;D8:E9)
  4. нажмите CTRL+SHIFT+ENTER.
Читайте так же:
Можно ли в ворде посчитать количество слов

Что такое матрица в жизни?

Матрица — это и тюрьма, только без физических границ. Границами являются психологические ограничения, комплекс программ, состоящие из свод правил, убеждений, установок. Контроль в матрице осуществляется с помощью чувств, страхов, моралью, совестью. правилами поведения и этикетом.

Что такое матрица простыми словами?

Матрица (ударение на первую «а») это математический объект, представляющий из себя набор упорядоченных чисел (целых, дробных или даже комплексных). Эти числа записываются, как правило в виде квадратной или прямоугольной таблицы, над которой можно совершать различные операции.

Чем матрица отличается от таблицы?

Ключевое различие между таблицами и матрицами состоит в том, что таблицы могут включать в себя только группы строк, тогда как матрицы содержат группы строк и группы столбцов. The key difference between tables and matrices is that tables can include only row groups, where as matrices have row groups and column groups.

Метод Крамера решения систем линейных уравнений

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

Формулы Крамера для нахождения неизвестных:

Найти значения и возможно только при условии, если

Этот вывод следует из следующей теоремы.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

На основании теоремы Крамера

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Читайте так же:
Значок фильтра в excel

Пример 2. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Применить метод Крамера самостоятельно, а затем посмотреть решения

Пример 4. Решить систему линейных уравнений:

Пример 5. Решить систему линейных уравнений методом Крамера:

К началу страницы

Пройти тест по теме Системы линейных уравнений

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Пример 7. Решить систему линейных уравнений методом Крамера:

Здесь a — некоторое вещественное число. Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 9. Решить систему линейных уравнений методом Крамера:

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Читайте так же:
Макрос добавления строки в excel

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

Метод Крамера

Метод Крамера (теорема Крамера) — способ решения квадратных СЛАУ с ненулевым определителем основной матрицы. Назван по имени Габриэля Крамера, автора метод.

Теорема Крамера

Теорема Крамера. Если определитель матрицы квадратной системы не равен нулю, то система совместна и имеет единственное решение, которое находится по формулам Крамера:

где $Delta$ — определитель матрицы системы, $Delta_$ — определитель матрицы системы, где вместо $i$ -го столбца стоит столбец правых частей.

Если определитель системы равен нулю, то система может быть как совместной, так и несовместной.

Данный метод удобно применять для маленьких систем с громоздкими вычислениями, а так же если нужно найти одну из неизвестных. Трудность заключается в том, что необходимо считать много определителей.

Примеры решения систем уравнений

Задание. Найти решение СЛАУ $left 5 x_<1>+2 x_<2>=7 \ 2 x_<1>+x_<2>=9 endright.$ при помощи метода Крамера.

$$Delta=left|begin 5 & 2 \ 2 & 1 endright|=5 cdot 1-2 cdot 2=1 neq 0$$

Так как $Delta neq 0$ , то по теореме Крамера система совместна и имеет единственное решение. Вычислим вспомогательные определители. Определитель $Delta_<1>$ получим из определителя $Delta$ заменой его первого столбца столбцом свободных коэффициентов. Будем иметь:

Аналогично, определитель $Delta_<2>$ получается из определителя матрицы системы $Delta$ заменой второго столбца столбцом свободных коэффициентов:

Тогда получаем, что

Ответ. $x_<1>=-11, x_<2>=31$

Метод Крамера не по зубам? Тебе ответит эксперт через 10 минут!

Задание. При помощи формул Крамера найти решение системы $left 2 x_<1>+x_<2>+x_<3>=2 \ x_<1>-x_<2>=-2 \ 3 x_<1>-x_<2>+2 x_<3>=2 endright.$

Решение. Вычисляем определитель матрицы системы:

$$Delta=left|begin 2 & 1 & 1 \ 1 & -1 & 0 \ 3 & -1 & 2 endright|=2 cdot(-1) cdot 2+1 cdot(-1) cdot 1+1 cdot 0 cdot 3-$$ $$-3 cdot(-1) cdot 1-(-1) cdot 0 cdot 2-1 cdot 1 cdot 2=-4 neq 0$$

Так как определитель матрицы системы неравен нулю, то по теореме Крамера система совместна и имеет единственное решение. Для его нахождения вычислим следующие определители:

$$Delta_<1>=left|begin 2 & 1 & 1 \ -2 & -1 & 0 \ 2 & -1 & 2 endright|=2 cdot(-1) cdot 2+(-2) cdot(-1) cdot 1+$$ $$+1 cdot 0 cdot 2-2 cdot(-1) cdot 1-(-1) cdot 0 cdot 2-(-2) cdot 1 cdot 2=4$$ $$Delta_<2>=left|begin 2 & 2 & 1 \ 1 & -2 & 0 \ 3 & 2 & 2 endright|=2 cdot(-2) cdot 2+1 cdot 2 cdot 1+2 cdot 0 cdot 3-$$ $$-3 cdot(-2) cdot 1-2 cdot 0 cdot 2-1 cdot 2 cdot 2=-4$$ $$Delta_<3>=left|begin 2 & 1 & 2 \ 1 & -1 & -2 \ 3 & -1 & 2 endright|=2 cdot(-1) cdot 2+1 cdot(-1) cdot 2+$$ $$+1 cdot(-2) cdot 3-3 cdot(-1) cdot 2-(-1) cdot(-2) cdot 2-1 cdot 1 cdot 2=-12$$

Читайте так же:
Моделирование биоритмов человека в excel

Решение систем линейных алгебраических уравнений в Excel

Если дано уравнение:
A*X = B, где A — квадратная матрица, X,B — вектора;
причем B — известный вектор (т е столбец чисел), X — неизвестный вектор,
то решение X можно записать в виде:
X = A -1 *B, где A -1 — обратная от А матрица.
В MS Excel обратная матрица вычисляется функцией МОБР(), а перемножаются матрицы (или матрица на вектор) — функцией МУМНОЖ().

Имеются «тонкости» использования этих матричных действий в Excel. Так, чтобы вычислить обратную матрицу от матрицы А, нужно: Чтобы умножить матрицу на вектор: Есть и другой спососб, при котором используется кнопка построителя функции Excel.

Пример СЛАУ 4-го порядка

Скачать документ Excel, в котором этот пример решён различными методами.

2. Метод Гаусса

Краткое описание.
  1. Решаю систему уравнений: A*X=B, где A — квадратная матрица n-го порядка, X,B — вектора
  2. К матрице A справа приписываю вектор B. Получаю расширенную матрицу A
  3. В дальнейшем A обозначает расширенную матрицу (n строк, n+1 столбец)
  4. Aij — обозначает элемент матрицы, находящийся на i-й строке и j-м столбце
  5. Делю 1-ю строку на A11, т е A’1j = A1j/A11 (j = 1..n+1). В результате A’11 = 1. A’ обозначает преобразованную строку
  6. Преобразую остальные строки по формуле: A’ij = Aij — A’1j*Ai1 (i = 2..n; j = 1..n+1)
  7. В результате 1-й столбец в строках 2..n заполнится нулями
  8. Отметим, что все эти преобразования не нарушают правильность уравнений
  9. Аналогичные действия проводим для обнуления 2-го столбца в строках 3..n, то есть:
  10. Делю 2-ю строку на A’22, т е A»2j = A’2j/A’22 (j = 2..n+1). В результате A»22 = 1. A» обозначает резельтат 2-го преобразования строки
  11. Преобразую остальные строки по формуле: A»ij = A’ij — A»2j*A’i2 (i = 3..n; j = 2..n+1)
  12. В результате 2-й столбец в строках 3..n заполнится нулями
  13. Аналогичные действия проводим далее
  14. В результате левые n столбцов матрицы A превращаютс в верхнюю треугольную матрицу, т е ниже главной диагонали находятся только нули (а на главной диагонали — единицы) — см Рис 1. На этом рисунке вектор B — слева, S — номер шага
  15. Затем выполняется «обратный ход», начиная с нижней строки, из которой можно вычислить Xn = Bn/Ann, например: Х4 = 9,55741/68,6388 = 0,13924 (рис. 1)
  16. Затем можно вычислить X3 = (0,9065 — 2,40919*0,13924) = 0,57059
  17. Затем из второй строки: X2 + 2,83562*X3 + 8,17808*X4 = 2,47945 вычисляю X2, и т д

3. Метод Якоби (метод простых итераций)

Для применения метода Якоби (и метода Зейделя) необходимо, чтобы диагональные компоненты матрицы А были больше суммы остальных компонент той же строки. Заданная система не обладает таким свойством, поэтому выполняю предварительные преобразования.

Далее номер в скобках означает номер строки. Новую первую строку получаю сложением старой первой строки с другими строками, умноженными на специально подобранные коэффициенты. Записываю это в виде формулы:

Для применения метода Якоби систему уравнений нужно преобразовать к виду:
X = B2 + A2*X Преобразую:

Далее делю каждую строку на множитель левого столбца, то есть на 16, 7, 3, 70 соответственно. Тогда матрица А2 имеет вид :

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector