Darbe.ru

Быт техника Дарби
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Радиосхемы Схемы электрические принципиальные

Преобразователь 12-220 Вольт на трансформаторе от старого компьютерного блока питания

Схем преобразователей в интернете много, но у всех у них есть одна общая проблема- необходимость изготовления повышающего трансформатора и это отталкивает очень многих радиолюбителей сборки таких устройств.

Схема преобразователя напряжения 12-220 Вольт, которая представлена ниже лишена этой проблемы. Трансформатор, конечно-же здесь тоже имеется, но было принято решение применить уже готовый транс- из устаревшего компьютерного блока питания at-200

Большинство подобных блоков питания собирались по двухтактной схеме на двух транзисторах MJE1 30 0 5. MJE13007 или подобных, которые через небольшой разделительный трансформатор запускались от задающего генератора на микросхеме TL494 . Выход преобразователя через конденсатор 1 мкФ подключался к первичной обмотке выходного трансформатора. Проблема была в том, что коэффициент трансформации оказался недостаточным, чтобы на выходе самодельного конвертера получить достаточное для запуска энергосберегающих ламп напряжение. Наиболее простым оказалось решение использовать доступную микросхему для построения преобразователей напряжения — VD2, VD7 , подключенных к «12В» отводам трансформатора. Выход схемы вольтодобавки подключен к «минусу» диодного моста на VD3 . VD6 , что позволило получить на нагрузке напряжение 190 . 220В, достаточное для нормального запуска и свечения люминесцентных ламп, питания адаптеров ноутбука, сотового телефона или небольшого стационарного телевизора.

Использование силовых полевых транзисторов (MOSFET) накладывает ограничение на минимальную величину запускающих импульсов — при снижении амплитуды импульсов ниже 10В сильно возрастает сопротивление открытого канала транзисторов, увеличивается их нагрев, снижается КПД и максимальная мощность в нагрузке. Для исключения увеличения потерь преобразователя при разряде аккумулятора в схеме применён узел «вольтодобавки» для питания микросхемы.
При подаче питания напряжение на микросхему поступает через диодVD1, а после начала генерации — с «вольтодобавки» на диодах VD2, VD7, через резистор R3, номинал которого подбирается в пределах 470 Ом . 1,5 кОм, с расчётом, чтобы при нормальной работе напряжение питания микросхемы составляло около 20В.
При этом, даже при глубоко разряженном аккумуляторе, напряжение питания микросхемы составляет не менее 15В, что полностью открывает каналы полевых транзисторов. Потери становятся настолько низки, что даже при нагрузке преобразователя до 40Вт для полевых транзисторов можно не использовать радиаторы. При использовании небольшого радиатора (пластина из алюминия 92*30*1,5 мм) мощность преобразователя достигает 100 . 200 Вт и полностью зависит от выбора импульсного трансформатора и выходных полевых транзисторов.

В схеме можно использовать любые доступные MOSFET транзисторы с низким сопротивлением открытого канала. Чем меньше R DC (on), тем лучше. Хорошо подходят транзисторы IRFZ24N, IRFZ34N, IRFZ44N, IRFZ46N, IRFZ48N, 2SK2985 и т.д.
Диоды VD2 . VD7 должны быть рассчитаны на рабочую частоту 100 кГц, рабочее напряжение не менее 400В и ток 1 . 3А, в качестве которых хорошо подходят доступные FR204. FR207, HER204 . HER207, FR154 . 157, 1N4936 . 1N4937, BYT52G, BYT53G, FR304 . FR307 и т.д. Можно использовать распространённые отечественные диоды КД226В . КД226Д.
Допустимый разброс ёмкости электролитических конденсаторов достаточно велик, так ёмкость конденсатора С3 может быть от 1000 мкФ и выше, на напряжение от 16В. Ёмкость С5 может быть от 4,7 мкФ и напряжение от 300В. Конденсатор С1 служит для «мягкого» пуска преобразователя и в большинстве случаев может не устанавливаться, т.к. он создаёт задержку включения преобразователя, что не всегда желательно. Рабочая частота генератора определяется номиналами резистора R2 и конденсатора C2. При сопротивлении резистора R2 = 5,1K ёмкость конденсатора может быть от 1000 до 3300 пФ. Оптимальная частота для конкретного импульсного трансформатора подбирается из условия получения максимального напряжения на номинальной нагрузке. На время настройки резистор R2 можно заменить подстроечным, а после заменить постоянным.

Для контроля разряда аккумуляторной батареи до 11,8 В конвертер можно дополнить узлом индикации нормального напряжения, в основе которого лежит использование широко распространённой микросхемы TL431A.

Этот прецизионный регулятор, иногда называемый управляемым стабилитроном, часто применяется в блоках питания телевизоров и мониторов для регулирования выходного напряжения посредством оптрона, подключенному к драйверу БП. Микросхема содержит 3 вывода: анод, катод и управляющий электрод REF. При напряжении на входе REF ниже 2,50 В проводимость между анодом и катодом при обратной полярности напряжения низка. При незначительном повышении напряжения свыше 2,50 В проводимость резко возрастает, что приводит к зажиганию светодиода. Для индикации нормального напряжения свыше 11,8 В необходимо точно подобрать делитель R1/R2. Соотношение резисторов должно быть равно 3,72 , т.е. если R2= 10K, то R1 должно быть равно 37,2 К. Для точной регулировки порога последовательно с одним из резисторов можно включить подстроечный резистор. При использовании не свинцовых аккумуляторов пороговое напряжение может быть иным. В этом случае произвольно задаётся номинал одного из резисторов, например R2, а R1 находится по формуле: R1= R2 * (Uпор -2,5) / 2,5.

Резистор R3 предназначен для исключения подсветки светодиода за счёт протекания небольшого тока между анодом и катодом микросхемы при напряжении на выводе REF ниже 2,50 В. Устройство подключают отдельными проводами прямо на клеммы аккумулятора.

Внешний вид и печатная плата устройства выглядят вот так:

Устройство собрано на небольшой печатной плате размером около 93 х 38 мм (в авторском варианте используется трансформатор от БП at-200).
При использовании иных элементов печатную плату придётся немного подкорректировать. Разрядный резистор R4 подключается непосредственно к выходной розетке. Его сопротивление может быть любым от 200кОм до 4,7мОм, а допустимое рабочее напряжение должно быть не менее 300В.

Читайте так же:
Машина символами на клавиатуре

Инвертор из бесперебойника

Как сделать инвертор из бесперебойника

В быту иногда возникает острая необходимость в бесперебойном питании различных устройств. Это могут быть аварийное освещение, инкубаторы, аквариумное оборудования или простой усилитель, с которым компания вырвалась на природу. Современные бюджетные компьютерные источники бесперебойного питания способны проработать не более получаса от автономного питания, а те которые могут и специально для этого предназначены, стоят совсем других денег. Автомобильные инверторы на выходе не всегда выдают частоту в 50 Гц. Если нужна автономность на несколько часов, тогда в голову сразу приходит мысль, можно ли запитать UPS от обыкновенного автомобильного аккумулятора. На этот вопрос мы и постараемся сегодня дать ответ, сделаем инвертор из ИБП своими руками.

Инвертор из бесперебойника

Для переделки в инвертор мы выбрали UPS Mustek Power Must 800 USB (номер платы 098-17615-00-S1), этот UPS как будто создан для того, что бы его переделали, тем более нагрузка в 500 Вт для бытовых целей не такая уж и малая.

Переделка ИБП под автомобильный аккумулятор будет разбита на несколько этапов:

  • Отключение функции Green Power
  • Установка активной системы охлаждения
  • Реальные тесты

Green Power в UPS – некая хитрая фишка, которая не дает бесперебойнику достаточно долго работать от АКБ. В разных аппаратах проявляется и реализуется по-разному, в одних она отключает UPS, который работает без нагрузки через 5-10 мин, в других аппаратах Green Power не дает работать UPS более 25-30 мин в независимости от его нагрузки. Иногда эту функцию можно отключить с помощью специального резистора, но бывает, что процесс отключения зашит в микроконтроллер UPS, и тут уже ничем ему особо не поможешь.

Первым делом открываем корпус и для себя делаем фотографию его внутренностей, это нужно сделать для того, что бы в дальнейшем не возникало вопросов, что и куда подключать при обратной сборке.

PS Mustek Power Must 800 USB

Поле чего отключаем все провода и достаем плату управления, номер платы 098-17615-00-S1.

PS Mustek Power Must 800

Если рассмотреть плату поближе можно увидеть, что на ней нанесены таблицы меняющие режимы работы бесперебойника.

PS Mustek Power Must 800

Нас интересует резистор R15A, который отвечает за функцию Green Power. Аккуратно выпаиваем резистор с платы, а для любителей тишины еще можно произвести небольшие манипуляции с бузером. Если хочется полностью избавиться от писков, которые издает ИБП можно отпаять перемычку JP82 или выпаять сам бузер, а для тех, кто хочет приглушить звук достаточно впаять небольшой резистор на 100-300 Ом, вместо этой перемычки.

переделка PS Mustek Power Must

Следующим шагом станет установка 80мм вентилятора и небольшая доработка корпуса UPS.

Вентилятор отлично крепится к пластиковым перемычкам, которые уже есть внутри корпуса.

инвертор из ИБП своими руками

Как видим вентилятор размещается по центру корпуса, что дает возможность обдувать воздухом не только трансформатор, но и радиаторы транзисторов, расположенные в верхней части корпуса.

инвертор из ИБП

Можно придумать массу способов, как запитать вентилятор в UPS. Но мы выбрали самый простой и доступный для повторения. Питание вентилятора можно взять с платы лицевой панели, на которой размещена кнопка питания и светодиоды. Кнопку включения ставим на положение выкл. и тестером прозваниваем выводы разъема, находим, куда приходит плюс и минус от АКБ (у нас это вывод: вывод 7 — плюс, 5 – минус). Уже по дорожке или с помощью тестера отслеживаем плюс АКБ к кнопке питания и после кнопки (он возвращается через вывод 8 на плату). Значит, питание вентилятора можно взять с выводов: 5 – минус; 8 – плюс. При таком включении вентилятор у нас будет работать на полную мощность, когда кнопка питания будет включена, т.е. и при работе от сети (зарядке) и при работе от АКБ.

переделка ИБП

Дальнейшим этапом станет незначительная доработка корпуса. Первым делом делаем отверстия для притока свежего воздуха к вентилятору. Если портить лицевую панель жалко, можно наделать отверстий в днище, высота ножек позволит спокойно проходить небольшому потоку воздуха.

инвертор из UPS

Также немного удивили декоративные пластиковые накладки, которые имеют перфорацию для вентиляции, но в самом корпусе в этих местах отверстий нет. Это все решается с помощью небольшого сверла и дрели.

Mustek переделка

Последним этапом перед сборкой станет фиксация трансформатора. При переноске UPS без штатного АКБ трансформатор буквально гуляет в своих посадочных местах, он с легкостью может из них выскочить и повредить основную плату.

как переделать ибп в инвертор

Подключаем теперь провода с клеммами, вместо штатной батареи. Для дополнительной изоляции лучше надеть специальные силиконовые колпачки. Провод для подключения к UPS автомобильного аккумулятора нужно брать с сечением как можно больше, а сам провод должен быть максимально коротким.

как переделать ибп

И так, немного погоняем и протестируем наш инвертор из бесперебойника.

Как видим сделать инвертор из бесперебойника совсем не сложно, пришла пора реальных тестов. UPS на холостом ходу, ток потребления около 1 А.

Инвертор из бесперебойника

Поставим на зарядку ноутбук, ток потребления поднялся до 5 А.

Инвертор mustek из бесперебойника

UPS нагружен лампочкой в 60 Вт, ток потребления почти 8 А.

Как сделать инвертор из бесперебойника

К стати, ток зарядки не подымается выше 1 А, по мере заряда постепенно снижается.

ток зарядки UPS

Напряжение зарядки данного ИБП составляет 13,7 В.

напряжение зарядки UPS

Не трудно догадаться, что чем более емкая у Вас батарея, тем такой инвертор из бесперебойника проработает дольше, но и заряжаться от сети будет тоже весьма немалое время.

Читайте так же:
Можно ли подключить двд к компьютеру

Данные фото и рекомендации даны для платы 098-17615-00-S1 от UPS Mustek Power Must 800 USB. При переделки других ИБП, вполне возможно данные рекомендации только частично останутся актуальными т.к. конструктив и схемы будут отличаться. Важно детально ознакомится с метками и таблицами, которые обозначены на плате, следовать рекомендациям производителя и не пытаться проводить эксперименты без знаний и навыков, т.к. можно вывести из строя не только сам UPS, но и аппаратуру, подключенную к нему. Главное помнить, что при работе UPS присутствует опасное для жизни напряжение.

Можно ли подключать автомобильный АКБ к UPS?

Мнения на этот счет двояки, но кардинально разные. Зачастую, по разным отзывам автомобильные аккумуляторы вполне справляются с данной задачей и работают стабильно. Основные проблема: газы, которые будут выделяться при зарядке АКБ и перегрев трансформатора, силовых ключей. От последней проблемы можно, хоть частично избавиться, используя дополнительные вентиляторы и т.п. А вот то от газов при зарядке никто никуда не денется. При зарядке выделяется не только взрывоопасный водород, но и другие газы, а это далеко не витамины. Если инвертор из бесперебойника используется в автомобиле, то и этот вопрос отпадает сам собой. Также важно помнить, что от сети зарядка АКБ происходит довольно небольшим током и процесс зарядки может растянуться на длительное время, от этого можно спокойно уйти если заряжать АКБ отдельно от UPS, например, для этих целей можно использовать самодельное зарядное устройство из блока питания компьютера. Использовать ли автомобильный АКБ в UPS решать нужно только Вам.

Блок питания 0-30 В из компьютерного БП ATX

Разрешите представить на суд читателей сайта 2Схемы универсальный источник питания для радиомастерской, изготовленный из блока питания ATX с контроллером TL494. БП был создан быстро из того, что было под рукой. Здесь не нужно проектировать плату, вся переделка укладывается на той что в блоке питания.

Блок питания 0-30 В из компьютерного БП ATX

Начал работу с удаления всех ненужных компонентов, то есть выпаивания диодов, дросселей и конденсаторов на вторичной стороне и всех элементов, связанных с обвязкой контроллера 1, 2, 3, 4, 15, 16, а затем собрал все в соответствии с доработанной схемой.

Схема переделки БП ATX в регулируемый

Представленная схема является модификацией примерной схемы блока питания ATX, поэтому она может немного отличаться, когда речь идет о части, содержащей резервный преобразователь, используемые ключи или значения некоторых элементов, поэтому обозначил элементы на схеме, поместив «xx» рядом с теми, которые должны быть изменены или добавлены.

Блок питания 0-30 В из компьютерного БП ATX

Блок питания оснащен двумя линейными потенциометрами по 10 кОм, один для регулирования напряжения, другой для ограничения тока. Ток измеряется между центральным отводом трансформатора и землей с помощью измерительного резистора 5 мОм / 2 Вт. Напряжение на измерительном резисторе отрицательно по отношению к массе, поэтому оно поступает на TL494, операционный усилитель LM358 используется только для усиления сигнала от потенциометра регулировки тока. Добавленный 36 кОм резистор на ножке 6 используется только для поднятия частоты инвертора с 30 кГц до примерно 45 кГц – без него блок питания также будет работать.

Блок питания 0-30 В из компьютерного БП ATX

В первый раз оставил главный трансформатор без изменений, включил источник питания и когда все заработало, перенастроил соединения вторичной обмотки. Эта операция не является необходимой, но тогда максимальное выходное напряжение можно безопасно поднять примерно до 24 В. У трансформатора было 4 вторичных обмотки на каждой стороне 3 витка, соединенных параллельно, и одна 4 витка обмотка, добавленная последовательно. Обмотки были разделены и соединены как на схеме.

Дроссель использовался как есть, вначале удалил из него все ненужные обмотки и оставил только то, что было по линии 12 В. Сердечником дросселя является T106-26, при 30 витках он должен иметь около 83 мкГн и ток насыщения 8,6.

Резервный преобразователь должен оставаться неизменным и содержать все элементы, необходимые для его правильной работы, поэтому его не следует изменять, тут схема составлена в упрощенном виде, лишь обозначено место, откуда должно быть взято питание контроллера и вентилятора. Блок питания был оснащен обычным цифровым модулем вольтметра. Блок работает стабильно, вполне устойчив к коротким замыканиям на выходных клеммах.

Источник питания типа AT также может быть преобразован, должен быть заменен только трансформатор или должны быть добавлены два диода FR107 для питания контроллера отводом 6 витков (3 + 3).

Выполнив выпрямитель из блока питания ATX и убрав режим Standby, преобразовал его в AT, и он также заработал без проблем. Регулирование тока также, даже с закороченными выходными проводами, увеличивает напряжение питания контроллера до примерно 26-29 В.

Источник питания AT от ATX, за исключением резервного преобразователя, отличается только способом подачи питания на контроллер (источник питания берется из выходного выпрямителя перед дросселем) и дополнительными резисторами 330k возбуждения между коллектором и базой главных транзисторов.

Каждый блок питания ATX может быть безопасно адаптирован к напряжению 24 В, не трогая на главный трансформатор. Единственное что нужно сделать, это удалить ненужные линии (в частности, 3,3 В) и подпаять конденсаторы на соответственно более высокое напряжение. Также полезно увеличить частоту инвертора примерно до 40-50 кГц, тогда уменьшается риск насыщения сердечника.

Второй вариант доработки БП

Также добавлю другую проверенную схему.

Блок питания 0-30 В из компьютерного БП ATX

Недостатком этого решения является использование двух дополнительных диодов и удвоение потерь выпрямителя. После замены резистора вывода 1 TL494 с 24 кОм на 36 кОм, можете снимать примерно до 40 В на выходе.

Читайте так же:
Можно ли подключить блютуз гарнитуру к ноутбуку

Блок питания 0-30 В из компьютерного БП ATX

Ещё приведу фотографии импульсного трансформатора и что с ним делать:

Блок питания 0-30 В из компьютерного БП ATX

Согласно модификации это должно быть так:

Блок питания 0-30 В из компьютерного БП ATX

Ш-образные ферриты тут EI33, конечно и с EI28 будет работать, но более 5 A из них не вытянуть.

Блок питания 0-30 В из компьютерного БП ATX

Что касается родной защиты источников питания AT / ATX, к сожалению большинство из них не имеют защиты от перегрузки по току, единственными средствами защиты являются перенапряжение и пониженное напряжение, а также превышение максимальной мощности, а как мы знаем мощность является произведением тока и напряжения, поэтому если источник питания имеет ограничение 300 Вт и максимум в линии 12 В 10 А, в таком БП до срабатывания защиты, ограничивающей максимальную мощность, произойдёт попытка выдать 25 А, а это приведет к насыщению дросселя и взрыву транзисторов.

Блок питания 0-30 В из компьютерного БП ATX

Здесь же источник питания переключается в режим регулирования тока при коротком замыкании выхода, и не имеет значения, происходит ли короткое замыкание при низком или максимальном напряжении. Сделан тест – ток транзисторов ограничен коэффициентом трансформации 4 и сглажен на дросселе. Ток мгновенного срабатывания первичной обмотки не должен превышать 2 А, токовый вывод зависит от резистора, поэтому для 100 Ом это будет 1,6 А, для 47 Ом 3,4 А, в любом случае максимальный мгновенный ток силовых транзисторов не должен превышать 6 А.

О переделке такого БП ATX в зарядное можете почитать по ссылке, а нерегулируемый вариант подобного блока питания есть тут.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Часто при модернизации компьютера вполне исправный блок питания остается не у дел. Его мощности недостаточно для запитки новых комплектующих. У тех, кто занимается апгрейдом железа, таких устройств может накопиться много. Встает дилемма: утилизировать БП или найти для них практическое применение. Одним из способов дать источнику питания компьютера вторую жизнь – сделать из него лабораторный блок питания с регулируемым выходным напряжением и настраиваемым ограничением по току. Выполнить такую переделку можно своими руками.

Маркировка проводов блока питания компьютера

С потребителями внутри корпуса компьютера БП соединяется с помощью жгутов с разъемами. Принят стандарт, по которому маркировка каждого питающего напряжения производится проводником с соответствующим цветом изоляции.

Цвет проводаНапряжение, В
Черный0 В (земля, общий провод)
Красный+5
Оранжевый+3,3
Желтый+12
Белый-5
Синий-12

Кроме силовых цепей, в жгутах присутствуют проводники с сигналами управления (их можно найти на разъеме, идущем к материнской плате).

Цвет проводаНазваниеФункцияУровень напряжения
ЗеленыйPower_ONСигнал от материнской платы – разрешение на включение+5 вольт в отсутствие разрешения, 0 вольт при получении сигнала на подачу напряжения
СерыйPower_good, Power_OKСигнал на материнскую плату — все напряжения в норме+5 вольт
ФиолетовыйStand byДежурное напряжение, присутствует всегда, если на БП подано 220 вольт+5 вольт, служит для питания цепей включения ПК и питания схемы ШИМ внутри БП
КоричневыйSenseРегулировка напряжения 3,3 вольта3,3 вольта

Большинство цепей для переделки в ЛБП не понадобятся, в процессе работы их надо будет обрезать.

Что понадобится для изготовления

Более 90% комплектующих для лабораторника в компьютерном блоке питания уже есть. Оставшиеся придется подбирать под конкретную схему (элементы недорогие и их будет немного), но обязательно понадобятся:

  • два потенциометра для регулировки напряжения и тока;
  • несколько оксидных конденсаторов на напряжение не ниже 35 вольт (лучше 50+) емкостью, соответствующей штатной емкости элементов канала +12 вольт (или больше, если уместятся по габаритам);
  • клеммы для подключения нагрузки (удобно использовать красную для плюсового вывода и черную для минусового);
  • вольтметр и амперметр для измерения выходных параметров (можно использовать аналоговые приборы, можно цифровые, а удобнее применять сдвоенный блок вольтметр-амперметр).

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Из приборов обязательно понадобится мультиметр. Не будет лишним и осциллограф – проверить наличие выходных импульсов на микросхеме ШИМ и ее реакцию на управляющее воздействие, если что-то пойдет не так. Также нужен будет паяльник с комплектом расходников и мелкий слесарный инструмент (набор отверток, кусачки и т.п.).

Схема для лабораторного БП

Для переделки ненужного блока питания компьютера в лабораторный источник с регулируемым выходным напряжением хорошо подходят БП стандарта ATX (но можно и AT), выполненные по схеме с ШИМ на микросхеме TL494 или ее аналогах.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Хотя они все построены по одной структурной схеме и работают по схожему принципу, физически реализованы источники питания могут быть по-разному. Потому первое, с чего надо начать – попытаться найти принципиальную схему от фактически имеющегося блока.

Процедуру переделки можно рассмотреть на примере модели LC-250ATX. Поняв принцип, можно будет работать и с другими подобными блоками.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

В основу работы LC-250ATX положен принцип ШИМ, реализованный на стандартной для таких схем микросхеме TL494. Она формирует импульсы, которые усиливаются ключами на транзисторах Q6,Q7, далее через трансформатор T2 ключами на транзисторах Q1, Q2 создаются импульсы на первичной обмотке трансформатора T1. Эти импульсы трансформируются через вторичные обмотки и подаются на выпрямители различных напряжений, из которых для переделки интересен лишь канал +12 вольт.

Схема дежурного напряжения собрана на транзисторе Q3, трансформаторе T3 и интегральном стабилизаторе 7805. Этот участок также понадобится для будущей конструкции. На операционном усилителе LM339 собрана схема формирования сигнала PWR_OK и запуска БП сигналом от материнской платы.

Читайте так же:
Мини монитор для компьютера

Процесс переделки

Перед изготовлением лабораторного блока питания из компьютерного надо открыть его корпус и очистить плату и внутреннее пространство от пыли. Лучше делать это пылесосом, при этом счищая загрязнения мягкой кистью.

Далее следует отрезать (или выпаять) от блока питания все провода, кроме одного черного и одного желтого. Если они разной толщины, то надо оставить самые толстые. Или можно оставить по два провода, соединив их параллельно.

После выпайки проводника в зеленой изоляции, освободившуюся контактную площадку надо соединить перемычкой с полигоном общего провода. Сделать это удобнее на плате по кратчайшему пути. После этой операции БП будет запускаться после подачи сетевого напряжения.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Следующий этап – удаление лишних элементов на плате.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Надо удалить все элементы выпрямителей ненужных в дальнейшем напряжений. Схему формирования сигнала PWR_OK и запуска БП, обведенную синим, можно оставить, а можно удалить. В последнем случае соединять зеленый провод с нулем не надо.

В цепи вывода питания (12) TL494 может быть цепочка из диода и резистора D73R25 (есть не во всех БП). Ее надо выпаять и обойти перемычкой. В цепи вывода 1 надо удалить все лишние резисторы, оставить один – идущий к шине +12 вольт. От четвертого вывода TL494 надо отключить все, кроме резистора. Между 4 и 13-14 ногами надо установить конденсатор (если его по факту нет) емкостью 1..10 мкФ, он обеспечит мягкий пуск. Все остальные соединения от выводов 13-14 надо отключить. Также надо полностью освободить выводы 15 и 16. От 2 и 3 выводов микросхемы надо отключить все, кроме частотозадающей RC-цепочки. Сглаживающий конденсатор в цепи 12 вольт (выделен зеленым кругом) надо заменить на другой, емкостью не ниже 1000 мкФ и напряжением не менее 35 В (можно выше по емкости и по напряжению, насколько позволит место). Также желательно увеличить сопротивление нагрузочного резистора в выходных цепях +12 вольт примерно в два раза. В итоге схема должна прийти к такому виду.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Важно! Обязательно надо оставить схему дежурного напряжения – от нее питается микросхема ШИМ. От нее впоследствии надо будет запитать вентилятор охлаждения, так как штатная схема его питания будет переделана.

Следующим шагом надо создать схему ограничения тока. Для этого ток надо сначала измерить. Для этого потребуется шунт от амперметра – измеряя падение напряжения на нем, можно судить о токе. Шунтовые сопротивления бывают в виде пластины или в виде проволочной спирали. Вторые удобнее – их проще монтировать в условиях ограниченного места.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Включается шунт в разрыв соединения средней точки выходного трансформатора и земляной шины. Параллельно ему включается амперметр, заодно показана схема подключения вольтметра для измерения выходного напряжения.

Далее цепь измерения тока через резистор подключается к выводу 15 микросхемы, его величина подбирается для необходимого ограничения тока. Начинать подбор надо с минимума.

Для регулировки ограничения тока устанавливается потенциометр сопротивлением 1..15 кОм. Такой же потенциометр устанавливается для регулировки уровня выходного напряжения.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Необходимость установки элементов, выделенных сними цветом, определяется в процессе наладки. Перед ее проведением надо:

  • временно выпаять резистор сопротивлением 24 кОм между выводом 1 микросхемы и шиной +12 вольт;
  • включить в разрыв сетевого провода блока питания лампу накаливания на 220 вольт (подобно предохранителю).

При наличии проблем в силовых цепях БП, лампа будет гореть в полный накал и ограничит ток. Если все в порядке, лампа гореть не будет или будет слабо светиться. В процессе наладки также желательно использовать такое включение.

Если лампа не загорелась, можно продолжать процедуру настройки. В отсутствие резистора R24 контур регулирования разомкнут, поэтому блок питания выдаст максимально возможное напряжение. Если оно недостаточно для дальнейшей эксплуатации, надо собрать выпрямитель по мостовой схеме, используя сборки или отдельные диоды на соответствующий ток и напряжение. Если все ОК, то вместо резистора надо впаять потенциометр или подстроечник сопротивлением 30..50 кОм. Вращая движок, надо добиться на выходе уровня примерно 0,85..0,9 от максимально возможного. Запас необходим для реализации стабилизации по току и напряжению. Получившееся сопротивление надо замерить и впаять в плату постоянный резистор с наиболее близким номиналом.

Резистор от шунта (по схеме 270 Ом) надо подобрать для получения максимального тока. При увеличении его сопротивления, верхняя граница тока тоже увеличивается. Задать ток можно с помощью нагрузки из автомобильных ламп накаливания соответствующей мощности.

Если наблюдается нестабильная работа под нагрузкой или при регулировке (прослушиваются свист, потрескивание и т.п.), надо попытаться устранить эти неприятные явления установкой элементов, выделенных синим цветом. Иногда добиться успеха получается без резистора 33 кОм, а иногда он нужен обязательно. В некоторых случаях помогает такой же резистор, включенный последовательно с конденсатором между 3 и 15 ножками микросхемы.

Завершающий этап – расположение органов управления и измерительных приборов на корпусе блока питания. Их можно закрепить на передней панели, оформив ее в соответствии с фантазией и возможностями, но необязательно. Если удобно, можно, например, расположить настроечные органы на одной панели корпуса, а измерительные приборы – на другой.

Читайте так же:
Можно ли отправить факс с компьютера

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Чтобы получить двухполярный лабораторник, лучше изготовить два ЛБП по приведенной методике и соединить их последовательно. Общая точка соединения будет служить нулевым проводом. Ток и напряжение каналов можно будет регулировать раздельно.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Процесс переделки блоков питания стандарта AT осуществляется по тому же принципу, но для их запуска не нужен сигнал с материнской платы, поэтому соединения зеленого провода с землей не потребуется в любом случае. В остальном надо лишь разобраться в схеме БП.

В завершении для наглядности рекомендуем серию тематических видеороликов.

Как сделать инвертор из бесперебойника своими руками?

При выезде на природу, где не предусмотрены привычные для нас 220 В, задумываешься о приобретении инвертора. Останавливает стоимость. Но когда умеешь работать паяльником и в состоянии разобраться, где в приборе или устройстве плюс, а где минус, можно решить несложную задачу: сделать инвертор из бесперебойника своими руками. Если ИБП, подключенный к сети 220 В, обеспечивает устройства питанием 12 В, то нельзя ли добиться обратного эффекта: получать 220 В из 12 В? При соответствующей доработке конструкции нет ничего невозможного.

Предлагаемый вариант рассчитан на использование автомобильного аккумулятора в качестве основного источника питания. Не обладая минимальными знаниями по электротехнике, браться за изготовление инвертора нежелательно.

В чем заключаются изменения, позволяющие получить инвертор из бесперебойника, как правило, с отслужившими аккумуляторами?

Рассмотрим процесс реконструкции в общем плане, обращая внимание на критичные для будущей эксплуатации инвертора моменты, так как ИБП разных фирм и моделей имеют конструктивные различия.

Моделирование инвертора из ИБП

инвертор из бесперебойника своими руками

В процессе преобразования придется разобрать ИБП, извлечь лишнее, доработать конструкцию, проверить и собрать. Нужен стандартный набор инструментов монтажника: паяльник, отвертки, кусачки, тестер. Пригодятся и запчасти, которые отсутствуют в разбираемом блоке: провод сечением от 4 кв. мм, разъемы, пара привычных крокодильчиков или провод с вилкой автомобильного прикуривателя, накладная розетка, кулер, защитная сетка, крепеж, изолента. Возможно, заранее стоит приготовить дрель для работы с корпусом.

Аккуратно разбираем корпус, вынимаем аккумулятор. Если изготовителем предусмотрена разборка корпуса на отдельные панели, стоит ее произвести: удобнее будет работать. Проще начать с монтажа входа, то есть подачи 12 В. Непосредственно на плате определить плюс и минус, потом подпаять или посадить на соответствующие разъемы красный к плюсу, черный к минусу то, что будет идти к прикуривателю или напрямую к клеммам аккумулятора.

Теперь занимаемся выходом. Провода, которые вели к трехштырьковому разъему подачи на ИБП 220 В, отпаиваем или отсоединяем. На их место монтируем провода нужной длины (для выносной розетки – сантиметров 70, если розетка планируется непосредственно на корпусе – 20-30 см). Подводим провода к розетке.

Черновая модель готова. Эксплуатировать ее нельзя, но проверить можно. Не собирая корпус (с ним предстоит поработать), подключаемся к аккумулятору и замеряем напряжение в розетке. Должно получиться порядка 160-180 вольт.

Если система молчит, возможно, в старом ИБП плата преобразователя нерабочая.

Окончательная сборка

Осталось заключить работающую схему в прибор, попутно изменяя и дополняя конструкцию.

Прежде всего демонтируем лишние разъемы, кнопки с соответствующими проводами, сигнальный динамик. Освобождается пространство под установку одного или двух кулеров. Их установка защитит устройство от перегрева. Логично соорудить сквозную вентиляцию. Для поступления воздуха в корпус придется высверлить отверстия или вырезать окошки. Вырезанные отверстия следует прикрыть защитной сеткой во избежание попадания пыли и грязи. Подсоединяются кулеры к 12-вольтовой ветке.

Все соединения проверяются, провода укладываются внутри корпуса, при необходимости крепятся. Нужно убедиться, что вентиляторы плотно заняли свои места. Иногда после изъятия оригинальных аккумуляторов трансформатор оказывается слабо зафиксированным, поэтому нужно дополнительно укрепить его, например, удерживающей пластиной (не металлической).

Предусмотреть крепление розетки на корпусе или просверлить дополнительное отверстие для вывода проводов.

Неплохо установить отдельный выключатель: скорее, для защиты автомобильного аккумулятора от полного разряда, в случае если забудете отключиться. Также можно разработать электронную схему, срабатывающую при заданном уровне заряда.

Преимущества самодельного инвертора

В качестве образца рассматривались источники бесперебойного питания относительно простой, бюджетной конструкции, когда, исходя из соображений стоимости, вместо замены отслуживших аккумуляторов покупается новый блок питания. В этом случае действительно получается почти бесплатный инвертор с неплохими техническими характеристиками.

Если исходный бесперебойник отдавал подключаемой технике 500 Вт, то теоретически он столько же отдаст и в виде инвертора. Практически эта величина меньше. Но, например, общую нагрузку в 350-400 Вт он спокойно потянет. Ограничение – время, на которое хватит зарядки аккумулятора. С учетом нынешней тенденции к уменьшению энергоемкости используемых приборов, при отсутствии электричества и без света не останешься, и мобильные устройства подзарядишь.

Имеется возможность воспользоваться электроинструментом. Это удобно, когда в дачном доме электричества еще нет, а проводку делать надо. Вручную можно, но это намного сложнее.

На весе получившегося устройства останавливаться не имеет смысла: автомобилю 3-5 кг не помеха.

Но при частом пользовании инвертором нужно помнить о подзарядке аккумулятора или иметь запасной.

Итак, имеет смысл достать из кладовки или гаража списанный из-за неисправности источник бесперебойного питания, немного модифицировать его и получить исправный преобразователь постоянного тока с напряжением 12 В в переменный ток напряжением 220 В.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector